Choice-Confidence (Choco) Model

A Choice-Confidence scale is a subjective scale in which the left and right halves can be conceptualized as two different choices (e.g., True/False, Agree/Disagree, etc.), and the magnitude of the response (how much the cursor is set towards he extremes) as the confidence in the corresponding choice.

This type of data can be modeled using a "Choice-Confidence" model consisting of a mixture of two scaled Ordered Beta distributions (see OrderedBeta) expressing the confidence for each choice, each choice occurring with a certain probability (p0 and p1). This model assumes that participant's behaviour when faced with a scale with a psychologically distinct left and right halves can be conceptualized as a decision between two discrete categories associated to a degree confidence in that choice (rather than a continuous degree of one category - e.g., "Agreement" - as assumed with regular Beta models).

The SubjectiveScalesModels.jl package defines the the Choco() function that can be used to generate or model data from choice-confidence scales.

Function

SubjectiveScalesModels.ChocoType
Choco(p1, μ0, ϕ0, μ1, ϕ1; p_mid=0, ϕ_mid=100, k0=0, k1=1)

Construct a Choice-Confidence (Choco) model distribution. It is defined as a mixture of two Ordered Beta distributions (see OrderedBeta), one for each side of the scale, and a third (optional) non-scaled Beta distribution for the middle of the scale (allowing for scores clustered in the center of the scale). The Beta distributions are defined using the BetaPhi2 parametrization.

Arguments

  • p1: Overall probability of the answers being on the right half (i.e., answers between 0.5 and 1) relative to the left half (i.e., answers between 0 and 0.5). Default is 0.5, which means that both sides (i.e., "choices") are equally probable.
  • μ0, μ1: Mean of the Beta distributions for the left and right halves, respectively.
  • ϕ0, ϕ1: Precision of the Beta distributions for the left and right halves, respectively.
  • p_mid: Probability of the answers being in the middle of the scale (i.e., answers around 0.5). Default is 0, which means that the model is a simple mixture of the two other Beta distributions.
  • ϕ_mid: Precision of the Beta distribution for the middle of the scale (relevant if p_mid > 0). Default to 100. This parameter should probably never be as low as 1, as it would be a flat distribution, rendering the distribution unidentifiable (since the same pattern could be observed with another combination of parameters).
  • k0, k1: Correspond to the cut points for extreme values (zeros and ones). The default values, 0 and 1, removes their influence (and the distributions are equivalent to regular Beta distributions).

See BetaPhi2 and OrderedBeta for more details about the parameters.

Details

Beta Phi2 is a variant of the traditional Mu-Phi location-precision parametrization. The modification - scaling ϕ by a factor of 1/2 - creates in a Beta distribution in which, when μ is at its center (i.e., 0.5), a parameter ϕ equal to 1 results in a flat prior (i.e., $Beta(1, 1)$). It is useful to set priors for ϕ on the log scale in regression models, so that a prior of $Normal(0, 1)$ assigns the most probability on a flat distribution (ϕ=1).

In the case of responses clustered in the middle of the scale (at 0.5), in this possible to add a third (non-scaled) Beta distribution centered around 0.5.

Examples

julia> Choco(p1=0.5, μ0=0.7, ϕ0=2, μ1=0.7, ϕ1=2)
Choco{Float64}(
p1: 0.5
μ0: 0.7
ϕ0: 2.0
μ1: 0.7
ϕ1: 2.0
p_mid: 0.0
ϕ_mid: 100.0
k0: 0.0
k1: 1.0
)
source

Usage

Simulate Data

Summary

You can use rand(dist, n) to generate n observations from a Choco() distribution with pre-specified parameters.

Let's generate some data from a Choco() distribution with known parameters that we are going to try to recover using Bayesian modelling.

using DataFrames
using Random
using Turing
using CairoMakie
using StatsFuns
using SubjectiveScalesModels

Random.seed!(123)

y = rand(Choco(p1=0.3, μ0=0.7, ϕ0=3, μ1=0.4, ϕ1=2), 1000)

hist(y, bins=beta_bins(30),  normalization=:pdf, color=:darkorange)
Example block output

Prior Specification

Deciding on priors requires a good understanding of the meaning of the parameters of the BetaPhi2 distribution on which the Choco model is based. Make sure you first read the documentation page about priors of the BetaPhi2() distribution.

The parameters of the Choco() distribution have the following requirements:

  • p0, μ0 and μ1: Must be in the interval 0-1.
  • ϕ0 and ϕ1: Must be positive (with a special value at 1 where the distribution is flat when μ is at 0.5).

Because of these specificities, it this convenient to express priors on a different scale (the logit scale for p0, μ0 and μ1, and the log scale for ϕ0 and ϕ1) and then transform them using a logistic or exponential link functions.

See code
p1 =  Normal(0, 2.0)
μ0 = Normal(0, 1.0)
μ1 = Normal(0, 0.8)
ϕ0 = Normal(0, 1.0)
ϕ1 = Normal(0, 1.2)

fig =  Figure(size = (850, 600))

ax1 = Axis(fig[1, 1],
    xlabel="Prior on the logit scale",
    ylabel="Distribution",
    yticksvisible=false,
    xticksvisible=false,
    yticklabelsvisible=false)

xaxis1 = range(-10, 10, 1000)

lines!(ax1, xaxis1, pdf.(p1, xaxis1), color=:purple, linewidth=2, label="p1 ~ Normal(0, 2)")
axislegend(ax1; position=:rt)

ax2 = Axis(fig[1, 2],
    xlabel="Prior after logistic transformation",
    yticksvisible=false,
    xticksvisible=false,
    yticklabelsvisible=false)
lines!(ax2, logistic.(xaxis1), pdf.(p1, xaxis1), color=:purple, linewidth=2, label="p1")

ax3 = Axis(fig[2, 1],
    xlabel="Prior on the logit scale",
    ylabel="Distribution",
    yticksvisible=false,
    xticksvisible=false,
    yticklabelsvisible=false)
lines!(ax3, xaxis1, pdf.(μ0, xaxis1), color=:blue, linewidth=2, label="μ0 ~ Normal(0, 1)")
lines!(ax3, xaxis1, pdf.(μ1, xaxis1), color=:red, linewidth=2, label="μ1 ~ Normal(0, 0.8)")
axislegend(ax3; position=:rt)

ax4 = Axis(fig[2, 2],
    xlabel="Prior after logistic transformation",
    yticksvisible=false,
    xticksvisible=false,
    yticklabelsvisible=false)
lines!(ax4, logistic.(xaxis1), pdf.(μ0, xaxis1), color=:blue, linewidth=2, label="μ0")
lines!(ax4, logistic.(xaxis1), pdf.(μ1, xaxis1), color=:red, linewidth=2, label="μ1")

ax5 = Axis(fig[3, 1],
    xlabel="Prior on the log scale",
    ylabel="Distribution",
    yticksvisible=false,
    xticksvisible=false,
    yticklabelsvisible=false)
lines!(ax5, xaxis1, pdf.(ϕ0, xaxis1), color=:green, linewidth=2, label="ϕ0 ~ Normal(0, 1)")
lines!(ax5, xaxis1, pdf.(ϕ1, xaxis1), color=:orange, linewidth=2, label="ϕ1 ~ Normal(0, 1.2)")
axislegend(ax5; position=:rt)

ax6 = Axis(fig[3, 2],
    xlabel="Prior after exponential transformation",
    yticksvisible=false,
    xticksvisible=false,
    yticklabelsvisible=false)
vlines!(ax6, [1], color=:black, linestyle=:dash, linewidth=1)
lines!(ax6, exp.(xaxis1), pdf.(ϕ0, xaxis1), color=:green, linewidth=2, label="ϕ0")
lines!(ax6, exp.(xaxis1), pdf.(ϕ1, xaxis1), color=:orange, linewidth=2, label="ϕ1")
xlims!(ax6, 0, 10)

fig[0, :] = Label(fig, "Priors Example for Choco Models", fontsize=20, color=:black, font=:bold)
fig;
Example block output
Example block output

Bayesian Choco Model with Turing

@model function model_choco(y)
    p1 ~ Normal(0, 2)
    μ0 ~ Normal(0, 1)
    μ1 ~ Normal(0, 0.8)
    ϕ0 ~ Normal(0, 1)
    ϕ1 ~ Normal(0, 1.2)

    for i in 1:length(y)
        y[i] ~ Choco(logistic(p1), logistic(μ0), exp(ϕ0), logistic(μ1), exp(ϕ1))
    end
end

fit_choco = model_choco(y)
posteriors = sample(fit_choco, NUTS(), 500)

# 95% CI
hpd(posteriors)
HPD
  parameters     lower     upper 
      Symbol   Float64   Float64 

          p1   -0.9547   -0.6974
          μ0    0.7528    0.8761
          μ1   -0.5941   -0.4090
          ϕ0    0.9967    1.2200
          ϕ1    0.5752    0.8642

Let us do a Posterior Predictive Check which involves the generation of predictions from the model to compare the predicted distribution against the actual observed data.

# Make predictions
pred = predict(model_choco([missing for _ in 1:length(y)]), posteriors)
pred = Array(pred)

fig = hist(y, bins=beta_bins(30), color=:darkorange, normalization=:pdf)
for i in 1:size(pred, 1) # Iterate over each draw
    hist!(pred[i, :], bins=beta_bins(30), color=(:dodgerblue, 0.005), normalization=:pdf)
end
fig
Example block output

Recover Parameters

posterior_mean = DataFrame(mean(posteriors))

# Format
results = DataFrame(
    Parameter = posterior_mean.parameters,
    Posterior_Mean = round.(posterior_mean.mean; digits=2),
    Estimate = round.([
        logistic(posterior_mean.mean[1]),
        logistic(posterior_mean.mean[2]),
        logistic(posterior_mean.mean[3]),
        exp(posterior_mean.mean[4]),
        exp(posterior_mean.mean[5])
        ]; digits=2),
    Truth = [0.3, 0.7, 1, 0.3, 3]
)

results
5×4 DataFrame
RowParameterPosterior_MeanEstimateTruth
SymbolFloat64Float64Float64
1p1-0.840.30.3
2μ00.820.690.7
3μ1-0.50.381.0
4ϕ01.113.040.3
5ϕ10.722.063.0

Full Choco (with zero, half and one inflation)

using DataFrames
using Random
using Turing
using CairoMakie
using StatsFuns
using SubjectiveScalesModels

Random.seed!(123)

y = rand(Choco(p1=0.3, μ0=0.7, ϕ0=3, μ1=0.4, ϕ1=2, p_mid=0.15, ϕ_mid=200, k0=0.1, k1=0.95), 10_000)

hist(y, bins=beta_bins(31),  normalization=:pdf, color=:darkblue)
Example block output

Prior Specification

Summary

We recommend the following priors:

  • p1 ~ Normal(0, 2): On the logit scale.
  • μ0, μ1 ~ Normal(0, 1): On the logit scale. Assign maximum mass to the middle of the choices.
  • ϕ0, ϕ1 ~ Normal(0, 1): On the log scale. Assign maximum mass to 1 after exponential transformation (flat distribution).
  • p_mid ~ Normal(-3, 1): On the logit scale. Assign more mass to low probabilities of mid-point responses.
  • ϕ_mid ~ Gamma(22, 0.22): On the log scale. Gamma distribution (> 0) that prevents any values below 1 (which would lead to an unidentifiable distribution). A Gamma(22, 0.22) that has a mode of ~100 after exponential transformation is an alternative in case truncated priors are not supported.
  • k0 ~ -Gamma(3, 3): On the logit scale. Prevents values below 0.5 (after logistic transformation).
  • k1 ~ Gamma(3, 3): On the logit scale. Prevents values above 0.5 (after logistic transformation).
See code
p1 =  Normal(0, 2.0)
μ0 = Normal(0, 1.0)
μ1 = Normal(0, 1.0)
ϕ0 = Normal(0, 1.0)
ϕ1 = Normal(0, 1.0)
p_mid = Normal(-3, 1.0)
ϕ_mid = truncated(Normal(5, 0.5); lower=0)
ϕ_mid2 = Gamma(22, 0.22)

k0 = -Gamma(3, 3)
k1 = Gamma(3, 3)

fig =  Figure(size = (1000, 1000))

ax1 = Axis(fig[1, 1],
    xlabel="Prior on the logit scale",
    ylabel="Distribution",
    yticksvisible=false,
    xticksvisible=false,
    yticklabelsvisible=false)

xaxis1 = range(-10, 10, 1000)

lines!(ax1, xaxis1, pdf.(p1, xaxis1), color=:purple, linewidth=2, label="p1 ~ Normal(0, 2)")
axislegend(ax1; position=:rt)

ax2 = Axis(fig[1, 2],
    xlabel="Prior after logistic transformation",
    yticksvisible=false,
    xticksvisible=false,
    yticklabelsvisible=false)
lines!(ax2, logistic.(xaxis1), pdf.(p1, xaxis1), color=:purple, linewidth=2, label="p1")

ax3 = Axis(fig[2, 1],
    xlabel="Prior on the logit scale",
    ylabel="Distribution",
    yticksvisible=false,
    xticksvisible=false,
    yticklabelsvisible=false)
lines!(ax3, xaxis1, pdf.(μ0, xaxis1), color=:blue, linewidth=2, label="μ0 ~ Normal(0, 1)")
lines!(ax3, xaxis1, pdf.(μ1, xaxis1), color=:red, linewidth=2, linestyle=:dash, label="μ1 ~ Normal(0, 1)")
axislegend(ax3; position=:rt)

ax4 = Axis(fig[2, 2],
    xlabel="Prior after logistic transformation",
    yticksvisible=false,
    xticksvisible=false,
    yticklabelsvisible=false)
lines!(ax4, logistic.(xaxis1), pdf.(μ0, xaxis1), color=:blue, linewidth=2, label="μ0")
lines!(ax4, logistic.(xaxis1), pdf.(μ1, xaxis1), color=:red, linestyle=:dash, linewidth=2, label="μ1")

ax5 = Axis(fig[3, 1],
    xlabel="Prior on the log scale",
    ylabel="Distribution",
    yticksvisible=false,
    xticksvisible=false,
    yticklabelsvisible=false)
lines!(ax5, xaxis1, pdf.(ϕ0, xaxis1), color=:green, linewidth=2, label="ϕ0 ~ Normal(0, 1)")
lines!(ax5, xaxis1, pdf.(ϕ1, xaxis1), color=:orange, linestyle=:dash, linewidth=2, label="ϕ1 ~ Normal(0, 1)")
axislegend(ax5; position=:rt)

ax6 = Axis(fig[3, 2],
    xlabel="Prior after exponential transformation",
    yticksvisible=false,
    xticksvisible=false,
    yticklabelsvisible=false)
vlines!(ax6, [1], color=:black, linestyle=:dash, linewidth=1)
lines!(ax6, exp.(xaxis1), pdf.(ϕ0, xaxis1), color=:green, linewidth=2, label="ϕ0")
lines!(ax6, exp.(xaxis1), pdf.(ϕ1, xaxis1), color=:orange, linestyle=:dash, linewidth=2, label="ϕ1")
xlims!(ax6, 0, 10)

ax7 = Axis(fig[4, 1],
    xlabel="Prior on the logit scale",
    ylabel="Distribution",
    yticksvisible=false,
    xticksvisible=false,
    yticklabelsvisible=false)
lines!(ax7, xaxis1, pdf.(p_mid, xaxis1), color=:brown, linewidth=2, label="p_mid ~ Normal(-3, 1)")
axislegend(ax7; position=:rt)

ax8 = Axis(fig[4, 2],
    xlabel="Prior after logistic transformation",
    yticksvisible=false,
    xticksvisible=false,
    yticklabelsvisible=false)
lines!(ax8, logistic.(xaxis1), pdf.(p_mid, xaxis1), color=:brown, linewidth=2, label="p_mid")

ax9 = Axis(fig[5, 1],
    xlabel="Prior on the log scale",
    ylabel="Distribution",
    yticksvisible=false,
    xticksvisible=false,
    yticklabelsvisible=false)
lines!(ax9, xaxis1, pdf.(ϕ_mid, xaxis1), color=:brown, linewidth=2, label="ϕ_mid ~ truncated(Normal(5, 0.5); lower=0)")
lines!(ax9, xaxis1, pdf.(ϕ_mid2, xaxis1), color=:orange, linestyle=:dash, linewidth=2, label="ϕ_mid ~ Gamma(22, 0.22)")
axislegend(ax9; position=:lt)

ax10 = Axis(fig[5, 2],
    xlabel="Prior after exponential transformation",
    yticksvisible=false,
    xticksvisible=false,
    yticklabelsvisible=false)
vlines!(ax10, [1], color=:black, linestyle=:dash, linewidth=1)
lines!(ax10, exp.(xaxis1), pdf.(ϕ_mid, xaxis1), color=:brown, linewidth=2, label="ϕ_mid")
lines!(ax10, exp.(xaxis1), pdf.(ϕ_mid2, xaxis1), color=:orange, linestyle=:dash, linewidth=2, label="ϕ_mid")
xlims!(ax10, 0, 300)

xaxis2 = range(-20, 20, 10_000)
ax11 = Axis(fig[6, 1],
    xlabel="Prior on the log scale",
    ylabel="Distribution",
    yticksvisible=false,
    xticksvisible=false,
    yticklabelsvisible=false)
lines!(ax11, xaxis2, pdf.(k0, xaxis2), color=:purple, linewidth=2, label="k0 ~ -Gamma(3, 3)")
lines!(ax11, xaxis2, pdf.(k1, xaxis2), color=:orange, linewidth=2, label="k1 ~ Gamma(3, 3)")
axislegend(ax11; position=:rt)
xlims!(ax11, -20, 20)

ax12 = Axis(fig[6, 2],
    xlabel="Prior after logistic transformation",
    yticksvisible=false,
    xticksvisible=false,
    yticklabelsvisible=false)
vlines!(ax12, [1], color=:black, linestyle=:dash, linewidth=1)
lines!(ax12, logistic.(xaxis2), pdf.(k0, xaxis2), color=:purple, linewidth=2, label="k0")
lines!(ax12, logistic.(xaxis2), pdf.(k1, xaxis2), color=:orange, linewidth=2, label="k1")


fig[0, :] = Label(fig, "Recommended Priors for Choco Models", fontsize=20, color=:black, font=:bold)
fig;
Example block output
Example block output

Bayesian Full Choco Model with Turing

@model function model_choco(y)
    p1 ~ Normal(0, 2)
    μ0 ~ Normal(0, 1)
    μ1 ~ Normal(0, 1)
    ϕ0 ~ Normal(0, 1)
    ϕ1 ~ Normal(0, 1)
    # p_mid ~ Normal(-3, 1)
    # ϕ_mid ~ truncated(Normal(5, 0.5); lower=0)
    k0 ~ -Gamma(3, 3)
    k1 ~ Gamma(3, 3)

    for i in 1:length(y)
        y[i] ~ Choco(logistic(p1), logistic(μ0), exp(ϕ0), logistic(μ1), exp(ϕ1), 0.0, 200, logistic(k0), logistic(k1))
    end
end

fit_choco = model_choco(y)
posteriors = sample(fit_choco, NUTS(), 500)
Chains MCMC chain (500×19×1 Array{Float64, 3}):

Iterations        = 251:1:750
Number of chains  = 1
Samples per chain = 500
Wall duration     = 121.52 seconds
Compute duration  = 121.52 seconds
parameters        = p1, μ0, μ1, ϕ0, ϕ1, k0, k1
internals         = lp, n_steps, is_accept, acceptance_rate, log_density, hamiltonian_energy, hamiltonian_energy_error, max_hamiltonian_energy_error, tree_depth, numerical_error, step_size, nom_step_size

Summary Statistics
  parameters      mean       std      mcse   ess_bulk   ess_tail      rhat   e     Symbol   Float64   Float64   Float64    Float64    Float64   Float64     ⋯

          p1   -0.7214    0.0237    0.0011   508.3549   299.6594    1.0017     ⋯
          μ0    0.2255    0.0150    0.0006   560.2960   409.3370    1.0184     ⋯
          μ1   -0.7945    0.0201    0.0008   598.5849   332.6438    0.9983     ⋯
          ϕ0   -0.0544    0.0161    0.0006   631.1050   372.2645    1.0008     ⋯
          ϕ1    0.2457    0.0227    0.0009   656.1494   436.0858    1.0052     ⋯
          k0   -1.7436    0.0351    0.0013   748.1021   510.8117    1.0006     ⋯
          k1    2.8947    0.1170    0.0047   636.7414   408.3394    0.9993     ⋯
                                                                1 column omitted

Quantiles
  parameters      2.5%     25.0%     50.0%     75.0%     97.5% 
      Symbol   Float64   Float64   Float64   Float64   Float64 

          p1   -0.7685   -0.7364   -0.7214   -0.7061   -0.6771
          μ0    0.1950    0.2159    0.2252    0.2353    0.2536
          μ1   -0.8353   -0.8073   -0.7949   -0.7820   -0.7549
          ϕ0   -0.0870   -0.0639   -0.0543   -0.0438   -0.0229
          ϕ1    0.2017    0.2301    0.2465    0.2618    0.2909
          k0   -1.8056   -1.7676   -1.7437   -1.7212   -1.6734
          k1    2.6736    2.8181    2.8928    2.9656    3.1305

Making inference on p_mid and ϕ_mid is challenging and requires a lot of data. It currently fails if we set p_mid to anything else than zero.

# Make predictions
pred = predict(model_choco([missing for _ in 1:length(y)]), posteriors)
pred = Array(pred)

fig = hist(y, bins=beta_bins(31), color=:darkblue, normalization=:pdf)
for i in 1:size(pred, 1) # Iterate over each draw
    hist!(pred[i, :], bins=beta_bins(31), color=(:darkorange, 0.01), normalization=:pdf)
end
fig
Example block output