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Abstract
NeuroKit2 is an open-source, community-driven, and user-centered Python package for neurophysiological signal
processing. It provides a comprehensive suite of processing routines for a variety of bodily signals (e.g., ECG, PPG,
EDA, EMG, RSP). These processing routines include high-level functions that enable data processing in a few lines of
code using validated pipelines, which we illustrate in two examples covering the most typical scenarios, such as an event-
related paradigm and an interval-related analysis. The package also includes tools for specific processing steps such as rate
extraction and filtering methods, offering a trade-off between high-level convenience and fine-tuned control. Its goal is to
improve transparency and reproducibility in neurophysiological research, as well as foster exploration and innovation. Its
design philosophy is centred on user-experience and accessibility to both novice and advanced users.

Keywords Neurophysiology · Biosignals · Python · ECG · EDA · EMG

Neurophysiological measurements increasingly gain popu-
larity in the study of cognition and behavior. These mea-
surements include electroencephalography (EEG), electro-
cardiography (ECG), electromyography (EMG) and elec-
trodermal activity (EDA). Their popularity is driven by
theoretical motivations (e.g., the growth of embodied or
affective neuroscience; Kiverstein and Miller,: 2015) as well
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as practical reasons. The latter include low costs (espe-
cially compared with other imaging techniques, such as
MRI or MEG), ease of use (e.g., portability, setup speed),
and the increasing availability of recording devices (e.g.,
wearables; Yuehong et al., 2016). Moreover, the extraction
of meaningful information from neurophysiological signals
is facilitated by current advances in signal processing algo-
rithms (Clifton et al., 2012; Roy et al., 2019). Unfortunately,
these algorithms are often not distributed in a usable way
(i.e., in the form of packaged code) which makes them
inaccessible to researchers who do not have the time or
experience to implement them. Moreover, many software
tools for neurophysiological analyses are limited to a single
type of signal (for instance ECG). This makes it inconve-
nient for researchers who might have to concurrently rely
on a number of software packages to process and analyze
multimodal data.

Additionally, psychology and neuroscience face a “repro-
ducibility crisis” (Maizey & Tzavella, 2019; Miłkowski
et al., 2018; Nosek et al., 2015; Topalidou et al., 2015)
which has lead to a profound reassessment of research prac-
tices (by researchers, publishers, funding agencies, etc.).
The opacity of data processing, such as ill-specified, or inac-
cessible analysis pipelines, plays a major role in the crisis.
This issue could in part be alleviated by making analyses
code an integral part of scientific publications, rather than
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treating a paper as the sole and most important part of the
research project. However, distributing the analysis script
alongside the paper poses new challenges: Scripts must be
shareable (not always feasible with closed-source and pro-
prietary software or programming languages), accessible
(well-documented and organized scripts) and reproducible
(which is difficult for software relying on graphical user
interfaces - GUI - in which the manual point-and-click
sequence can be hard to automate).

NeuroKit2, addresses these challenges by offering a free,
user-centered, and comprehensive solution for neurophysi-
ological data processing, with an initial focus on bodily sig-
nals including ECG (electrocardiography is used to measure
cardiac activity), PPG (photoplethysmogram is an optical
measurement of blood flow), RSP (respiration measures),
EDA (electrodermal activity measuring the electrical con-
ductance of the skin), EMG (electromyography measuring
muscular activity) and EOG (electrooculography measur-
ing eye movements). It also provides modality-independent
functions that can be used for other modalities such as EEG
(electroencephalography measuring electrical activity of the
brain), for which more specific support is in development.

The open-source Python package is developed by a
multi-disciplinary team that actively invites new collab-
orators. The target audience of NeuroKit2 includes both
experienced and novice programmers. Although being a
programming-based tool, users not familiar with Python or
other languages can start using the software (and improve
their programming skills along the way) by following our
step-by-step examples. Moreover, we also include a thor-
ough tutorial on Python installation, as well as a “10 minutes
introduction to Python” in the documentation. While many
of the existing software caters to a single signal modal-
ity (e.g., KUBIOS©(Tarvainen et al., 2014), HeartPy (van
Gent et al., 2019) and pyHRV (Gomes et al., 2019) for
ECG, cvxEDA (Greco et al., 2015), Ledalab (Benedek &
Kaernbach, 2010), and SCRalyze (Bach, 2014) for EDA),
NeuroKit2 provides support for various signals and allows
its users to process signals from multiple physiological
modalities with a uniform application programming inter-
face (API). It aims at being accessible, well-documented,
well-tested, cutting-edge, flexible and efficient. The library
allows users to select from a wide range of validated anal-
ysis pipelines and to create custom pipelines tailored to
specific analyses requirements. Historically, NeuroKit2 is
the re-forged successor of NeuroKit “1” (Makowski, 2020),
taking over its most successful features and design choices,
and re-implementing them in a way that adheres to current
best practices in open source software development.

NeuroKit2 offers a breadth of functionalities which
includes, but is not limited to, signal simulation; data
management (e.g., downloading existing datasets, reading
and formatting files into a dataframe); event extraction from

signals; epoch extraction, signal processing (e.g., filtering,
resampling, rate computation using different published
algorithms detailed in the package’s documentation);
spectral analyses; complexity and entropy analyses; and
convenient statistical methods (e.g., K-means clustering,
ICA or PCA). A variety of plotting functions allow for quick
and expressive visualization of the signal processing and the
resulting features.

The package is implemented in Python 3 (Van Rossum
& Drake, 2009), which means that NeuroKit2’s users
benefit from an large number of learning resources and
a vibrant community. The package depends on relatively
few, well established and robust packages from the numeric
Python ecosystem such as NumPy (Harris et al., 2020),
pandas (McKinney & et al. 2010), SciPy (Virtanen et al.,
2020), scikit-learn (Pedregosa et al., 2011) and MatplotLib
(Hunter, 2007) (with an additional system of optional
dependencies), making NeuroKit2 a viable dependency for
other packages.

NeuroKit2’s source code is available under the MIT license
on GitHub (https://github.com/neuropsychology/NeuroKit).
Its documentation (https://neurokit2.readthedocs.io/)
is automatically built and rendered from the code and
includes guides for installation and contribution, a
description of the package’s functions, as well as several
“hands-on” examples and tutorials (e.g., how to extract
and visualize individual heartbeats, how to analyze event-
related data etc.). Importantly, users can add new examples
by simply submitting a Jupyter notebook (Kluyver et al.,
2016) to the GitHub repository. The notebook will auto-
matically be displayed on the website, ensuring easily
accessible and evolving documentation. Moreover, users
can try out the example notebooks directly in their browser
via a cloud-based Binder environment (Jupyter et al.,
2018). Finally, the issue tracker on GitHub offers a con-
venient and public forum that allows users to report bugs,
get help and gain insight into the development of the
package. Our active collaborators range from academics,
professionals and practitioners in the life sciences and
engineering fields (See the “authors” section on the pack-
age’s documentation). Based on community feedback
that we received (social networks, GitHub issues), Neu-
roKit2 has attracted users of different profiles, ranging from
those who are new to signal processing and programming
to more experienced users.

NeuroKit2 aims at being reliable and trustworthy,
including implementations of processing pipelines that have
been described in peer-reviewed publications. Details and
references regarding those pipelines are available in the
package’s documentation. Many pipelines have been tested
against established software such as BioSPPy (Carreiras
et al., 2015), hrv (Bartels & Pecanha, 2020), PySiology
(Gabrieli et al., 2019), HeartPy (van Gent et al., 2019),
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systole (Legrand & Allen, 2020) or nolds (Schölzel, 2019).
Additionally, the repository leverages a comprehensive
test suite (using pytest) and continuous integration (using
Travis-CI and GitHub actions) to ensure software stability
and quality. The test coverage and build status can
transparently be tracked via the GitHub repository. Thanks
to its collaborative and open development, NeuroKit2 can
remain cutting-edge and continuously evolve, adapt, and
integrate new methods as they are emerging.

Finally, we believe that the design philosophy of
NeuroKit2 contributes to an efficient (i.e., allowing to
achieve a lot with few functions) yet flexible (i.e., enabling
fine control and precision over what is done) UI. We will
illustrate these claims with two examples of common use-
cases (the interval-related analysis on resting state data and
the event-related analysis), and will conclude by discussing
how NeuroKit2 contributes to neurophysiological research
by raising the standards for validity, reproducibility and
accessibility.

Design philosophy

NeuroKit2 aims at being accessible to beginners and, at
the same time, offering a maximal level of control to
experienced users. This is achieved by allowing beginning
users to implement complex processing pipelines with
a few functions, while still providing experienced users
with fine-tuned control over arguments and parameters. In
concrete terms, this trade-off is enabled by an API structure
organized in three layers.

Low-level: Base utilities for signal processing

The basic building blocks are functions for general signal pro-
cessing, i.e., filtering, resampling, interpolation, peak detec-
tion, etc. These functions are modality-independent, and
include several parameters (e.g., one can change the filtering
method, frequencies, and order, by overwriting the default
arguments). Most of these functions are based on established
algorithms implemented in scipy (Virtanen et al., 2020).
Examples of such functions include signal filter(),
signal interpolate(), signal resample(),
signal detrend(), and signal findpeaks().

Mid-level: Neurophysiological processing steps

The base utilities are used by mid-level functions specific to
the different physiological modalities (i.e., ECG, RSP, EDA,
EMG, PPG). These functions carry out modality-specific
signal processing steps, such as cleaning, peak detection,

phase classification or rate computation. Critically, for
each type of signal, uniform function names are used (in
the form signaltype functiongoal()) to achieve
equivalent goals, e.g., * clean(), * findpeaks(),

* process(), * plot(), making the implementation
intuitive and consistent across different modalities.

For example, the rsp clean() function uses
signal filter() and signal detrend(), with
different sets of default parameters that can be switched
with a “method” argument (corresponding to different
published or established pipelines). For instance, setting
method="khodadad2018" will use the cleaning work-
flow described in Khodadad et al. (2018). However, if a
user wants to build their own custom cleaning pipeline,
they can use the cleaning function as a template, and
tweak the parameters to their desires in the low-level signal
processing operations.

High-level wrappers for processing and analysis

The mid-level functions are assembled in high-level
wrappers, that are convenient entry points for new
users. For instance, the ecg process() function inter-
nally chains the mid-level functions ecg clean(),
ecg peaks(), ecg quality(), ecg delineate(),
and ecg phase(), as shown in Fig. 1. A specific pro-
cessing pipeline can be selected with the method argument
that is then propagated throughout the internal functions.
Easily switching between processing pipelines allows for
the comparison of different methods, and streamlines crit-
ical but time-consuming steps in reproducible research,
such as the validation of data preparation and qual-
ity control (Quintana et al., 2016). Finally, the package
includes convenience-functions (e.g., bio process) that
enable the combined processing of multiple types of sig-
nals at once (e.g., bio process(ecg=ecg signal,
eda=eda signal)).

Performing an entire set of operations with sensible
default parameters in one function can be rewarding, espe-
cially for beginners, allowing them to perform cutting-edge
processing or replication of research steps without requir-
ing much programming expertise. Moreover, it contributes
to the demystification of the usage of programming tools
(as opposed to GUI-based software such as SPSS, Kubios,
or Acqknowledge), providing a welcoming framework to
further explore physiological data processing. Importantly,
more advanced users can build custom analysis pipelines
by using the low- and mid-level functions, allowing for
finer control over the processing parameters. We believe that
this implementation is a well-calibrated trade-off between
flexibility and user-friendliness.
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Fig. 1 Illustration of the NeuroKit2 package architecture, in the case of ECG signal processing

Installing NeuroKit2

NeuroKit2 is available on PyPI, a repository of software
for the Python programming language. and can be installed
using pip (via “pip install neurokit2” command). Detailed
instructions on how to install Python are also available in
the installation section of the package’s documentation.

Examples

In this section, we present two examples that illustrate
the most common use-cases (Fig. 2). Both examples can
be accessed in an interactive format (without any prior
installation) via a Binder environment. The first example
illustrates an interval-related paradigm where characteristics
of physiological activity during a certain time interval

(not necessarily tied to a specific and sudden event)
are extracted. The second example presents an event-
related paradigm, in which the interest lies in shorter-term
physiological changes related to specific events (see Fig. 1
and Table 1). The example datasets are available with
the package and can be downloaded using the data()
function. This utility reads comma separated values files
(.csv) with the Pandas function pd.read csv(), where each
column is a different biosignal. Each row is a sample that
correspond to signals’ value at a given point in time. All
examples use the 0.0.41 version release of NeuroKit2.

Interval-related paradigm

The first dataset corresponds to 5 minutes of physiological
activity of a human participant at rest (eyes-closed in a
seated position), with no specific instructions. It contains

Table 1 Examples of features computed in different domains

Interval-related Features Event-related Features

ECG Rate Characteristics (Mean, Amplitude) ECG Rate Changes (Min, Mean, Max, Time of Min, Max, Trend)

Heart Rate Variability (HRV) indices RSP Rate Changes (Min, Mean, Max, Time of Min, Max)

Respiratory Rate Variability (RRV) indices RSP Amplitude Measures (Min, Mean, Max)

Respiratory Sinus Arrhythmia (RSA) indices ECG and RSP Phase (Inspiration/Expiration, Systole/Diastole, Completion)

Number of SCR Peaks and mean amplitude SCR peak and its characteristics (amplitude, rise time, recovery time)
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three channels (ECG, PPG and RSP) sampled at a frequency
of 100Hz.

Here, the aim was to illustrate a type of physiological
analysis that we refer to as interval-related (or resting-
state paradigm, as opposed to an event-related paradigm).
After loading the package and the example dataset, each
physiological signal is processed using bio process().
As we want to compute features related to the entire dataset
(see Table 2), we can directly pass the whole dataframe
to bio analyze(), and compute the interval-related
features. Users can choose a specific time interval from their
dataset.

Interval-related analyses compute features of signal
variability and activation patterns over a given period of
time, including average heart and breathing rate, as well as
indices of heart rate variability (HRV) and respiratory sinus
arrhythmia (RSA). NeuroKit2 allows for the fast creation
of standardized and reproducible pipelines to describe this
kind of physiological activity.

Event-related Paradigm

This example dataset contains ECG, RSP and EDA signals
of one participant who was presented with four emotional
images (from the NAPS database; Marchewka et al., 2014)
in a typical (albeit shortened) experimental psychology
paradigm.

The signals are 2.5 minutes (150 seconds) long and are
recorded at a frequency of 100Hz (note that the sampling

rate is lower than usually required, see Quintana et al.
(2016), in order to be able to include the example data
in the NeuroKit2 distribution). It has 4 channels including
three physiological signals, and one corresponding to events
marked with a photosensor (signal strength decreases when
a stimulus appears on the screen).

In this example, the steps of the analysis are identical
to the previous example, including loading the package,
the dataset and processing the data. The difference is
that stimulus onsets in the photosensor are detected
separately with events find(). Once we have the
preprocessed signals and the location of events, we use
epochs create() to slice the data into segments
corresponding to a time window (ranging from -0.1 to 4
seconds) around each stimulus. Finally, relevant features are
computed for each epoch (i.e., each stimulus) by passing
them to bio analyze().

Table 2 Subset of properties characterizing the physiological activity over a period of 5 minutes of resting-state

ECG Rate Mean HRV RMSSD RSP Rate Mean RSA P2T Mean

86.39 38.84 15.74 0.07
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Table 3 Subset of the ouput related to event-related analysis characterizing the pattern of physiological changes related to specific stimuli

Condition ECG Rate Mean RSP Rate Mean EDA Peak Amplitude

Negative −2.01 −0.15 0.93

Neutral −3.13 1.40 0.41

Neutral 1.34 −0.34 0.02

Negative −3.55 1.97 1.06

Notably, the features include the changes in rate of
ECG and RSP signals (e.g. maximum, minimum and mean
rate after stimulus onset, and the time at which they
occur), and the peak characteristics of the EDA signal (e.g.,
occurrence of skin conductance response (SCR), and if
SCR is present, its corresponding peak amplitude, time of
peak, rise and recovery time). In addition, respiration and
cardiac cycle phases are extracted (i.e., the respiration phase
- inspiration/expiration - and cardiac phase - systole/diastole
- occurring at the onset of event).

We hope that these examples demonstrate how straight-
forward the process of extracting features of physiological
responses can be with NeuroKit2. This pipeline can easily
scale up to group-level analyses by aggregating the average
of features across participants. In addition to streamlin-
ing data analyses, NeuroKit2 aims to allow researchers to
extract an extensive suite of features that can be linked to
neurocognitive processes. In this example (see Table 3),
exposure to negative stimuli, as compared to neutral stimuli,

is related to stronger cardiac deceleration, higher skin con-
ductance response, and accelerated breathing rate (note that
this descriptive interpretation is given solely for illustrative
purposes).

Discussion

NeuroKit2 is a neurophysiological signal processing library
accessible to people across different levels of programming
experience and backgrounds. For users who are novice
programmers or are new to neurophysiology, the package
presents an ideal opportunity for exploration and learning.
The experienced programmer is encouraged to choose
and validate the preprocessing and analysis pipelines most
appropriate for their data. Suggestions for improvements or
additions to the library are welcome and openly discussed
in the community. Overall, the development of NeuroKit2
is focused on creating an intuitive user-experience, as well

Fig. 2 Plot window displaying a period of raw electrocardiogram
(ECG in red), respiration (RSP in blue) and electrodermal activity
(EDA in purple) data. The green highlighted section, spanning from 0
to 20s, represents the periodic region of interest during interval-related
analysis. The 3 event markers are indicated by dotted lines, and the

orange highlighted sections spanning 0.1s before the onset of each
event and ending 4s after the event, represent periodic regions of inter-
est during event-related analysis. The link for generating the figure
can be found on NeuroKit2’s GitHub repository (https://github.com/
neuropsychology/NeuroKit/blob/master/paper/make figures.Rmd)
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as building a collaborative community. Its modular structure
and organization not only facilitate the use of existing
and validated processing pipelines, but also create a fertile
ground for experimentation and innovation.

The library is also a pragmatic answer to the
broader need for transparent and reproducible methods in
neurophysiology. The impact of our package on repro-
ducibility in research is two-fold: firstly, while black-box
software can be easy and convenient to use, users do not
have access to the source code, making processing results
subject to unknown idiosyncrasies of the underlying imple-
mentation of processing routines. This makes it difficult
to identify the source of potential discrepancies in results
obtained with other software and can lead to irreproducible
findings. In contrast, NeuroKit2 documents each step of the
implementation along with the analysis method, allowing
users to pin-point the analysis steps where differences might
arise. While maintaining a focus on overall user-experience,
the open-source nature of NeuroKit2 encourages indepen-
dent researchers to cross-validate research findings. Sec-
ondly, not only does NeuroKit2 implement several methods
for analysis, it also allows for the comparison of differ-
ent algorithms. For instance, using a suite of open-source
databases, different algorithms for ECG R-peak detection
have been compared for their robustness (number of errors
encountered), efficiency (computation time) and accuracy
(absolute distance from true R-peak location), documented
in the “Studies” section of the package’s documentation. As
NeuroKit2 continues to work on benchmarking, we hope to
support users in making more informed decisions regarding
which method is most suited for their specific requirements.

NeuroKit2 also prioritizes a high standard of quality
control during code development. This is done through
automated testing using continuous integration, as well as
striving for code simplicity and readability. The API is
thoroughly documented, including working examples. We
ensure that the documentation evolves alongside the code by
including it in our continuous integration. While NeuroKit2
currently has a fairly comprehensive documentation, more
examples and tutorials will be added as the package grows
and expands. Additionally, we provide thorough guidelines
for new contributors who wish to contribute code or
documentation.

We expect the package’s future evolution to be driven
by the communities’ needs and the advances in related
fields. For instance, although NeuroKit2 already implements
a lot of useful functions for EEG processing (such as
entropy and fractal dimensions quantification), its support
could be further improved (for example with high-level
functions built on top of utilities provided by the leading
EEG Python software, namely MNE, Gramfort et al.
(2013). Additionally, in the future we strive to support
other types of bodily signals (e.g., electrogastrography -

EGG, electrooculography - EOG) and plan to optimize
computational efficiency on large datasets. We also plan
to further validate the available processing pipelines using
public databases. In line with this objective, the support of
standardized data structure formats (e.g. WFDB, BIDS, . . . )
could be extended.

In conclusion, we believe that NeuroKit2 provides useful
tools for anyone who is interested in analyzing physiologi-
cal data collected with research-grade hardware or wearable
“smart health devices”. By increasing the autonomy of
researchers and practitioners, and by shortening the delay
between data collection and results acquisition, NeuroKit2
could be useful beyond academic research in neuroscience
and psychology, including applications such as personal
physiological monitoring and exercise science. Finally, we
hope that NeuroKit2 encourages users to become part of a
supportive open-science community with diverse areas of
expertise rather than relying on closed-source and propri-
etary software, thus shaping the future of neurophysiology
and its related fields.
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